Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Prostate ; 84(9): 797-806, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38558412

RESUMO

BACKGROUND: Prostate cancer (PCa) is a common malignancy in males and obesity may play a role in its development and progression. Associations between visceral obesity measured by a body shape index (ABSI) and PCa mortality have not been thoroughly investigated. This study assessed the associations between ABSI, body mass index (BMI), and long-term PCa-specific mortality using a nationally representative US database. METHODS: This population-based longitudinal study collected data of males aged ≥40 years diagnosed with PCa and who underwent surgery and/or radiation from the National Health and Nutrition Examination Survey database 2001-2010. All included participants were followed through the end of 2019 using the National Center for Health Statistics Linked Mortality File. Associations between PCa-specific mortality, BMI, and ABSI were determined using Cox proportional hazards regression and receiver operating characteristic (ROC) curve analysis. RESULTS: Data of 294 men (representing 1,393,857 US nationals) were analyzed. After adjusting for confounders, no significant associations were found between BMI (adjusted hazard ratio [aHR] = 1.06, 95% confidence interval [CI]: 0.97-1.16, p = 0.222), continuous ABSI (aHR = 1.29, 95% CI: 0.83-2.02, p = 0.253), or ABSI in category (Q4 vs. Q1-Q3: aHR = 1.52, 95% CI: 0.72-3.24, p = 0.265), and greater risk of PCa-specific mortality. However, among participants who had been diagnosed within 4 years, the highest ABSI quartile but not in BMI was significantly associated with greater risk for PCa-specific mortality (Q4 vs. Q1-Q3: aHR = 5.34, 95% CI: 2.26-12.62, p = 0.001). In ROC analysis for this subgroup, the area under the curve of ABSI alone for predicting PCa-specific mortality was 0.638 (95% CI: 0.448-0.828), reaching 0.729 (95% CI: 0.490-0.968 when combined with other covariates. CONCLUSIONS: In US males with PCa diagnosed within 4 years, high ABSI but not BMI is independently associated with increased PCa-specific mortality.


Assuntos
Índice de Massa Corporal , Inquéritos Nutricionais , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/patologia , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Idoso , Estudos Longitudinais , Adulto , Bases de Dados Factuais , Obesidade Abdominal/mortalidade , Obesidade Abdominal/epidemiologia , Fatores de Risco
2.
Tzu Chi Med J ; 34(4): 359-366, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578640

RESUMO

Prostate cancer (PC) and breast cancer (BC) are the most common cancers in men and women, respectively, in developed countries. The increased incidence of PC and BC largely reflects an increase in the prevalence of obesity and metabolic syndrome. In pathological conditions involving the development and progression of PC and BC, adipose tissue plays an important role via paracrine and endocrine signaling. The increase in the amount of local adipose tissue, specifically periprostatic adipose tissue, may be a key contributor to the PC pathobiology. Similarly, breast adipose tissue secretion affects various aspects of BC by influencing tumor progression, angiogenesis, metastasis, and microenvironment. In this context, the role of white adipose tissue (WAT) has been extensively studied. However, the influence of browning of the WAT on the development and progression of PC and BC is unclear and has received less attention. In this review, we highlight that adipose tissue plays a vital role in the regulation of the tumor microenvironment in PC or BC and highlight the probable underlying mechanisms linking adipose tissue with PC or BC. We further discuss whether the browning of WAT could be a therapeutic strategy for the treatment of PC and BC.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32922364

RESUMO

Activating transcription factor 3 (ATF3) is a stress-induced transcription factor that plays vital roles in modulating metabolism, immunity, and oncogenesis. ATF3 acts as a hub of the cellular adaptive-response network. Multiple extracellular signals, such as endoplasmic reticulum (ER) stress, cytokines, chemokines, and LPS, are connected to ATF3 induction. The function of ATF3 as a regulator of metabolism and immunity has recently sparked intense attention. In this review, we describe how ATF3 can act as both a transcriptional activator and a repressor. We then focus on the role of ATF3 and ATF3-regulated signals in modulating metabolism, immunity, and oncogenesis. The roles of ATF3 in glucose metabolism and adipose tissue regulation are also explored. Next, we summarize how ATF3 regulates immunity and maintains normal host defense. In addition, we elaborate on the roles of ATF3 as a regulator of prostate, breast, colon, lung, and liver cancers. Further understanding of how ATF3 regulates signaling pathways involved in glucose metabolism, adipocyte metabolism, immuno-responsiveness, and oncogenesis in various cancers, including prostate, breast, colon, lung, and liver cancers, is then provided. Finally, we demonstrate that ATF3 acts as a master regulator of metabolic homeostasis and, therefore, may be an appealing target for the treatment of metabolic dyshomeostasis, immune disorders, and various cancers.


Assuntos
Fator 3 Ativador da Transcrição/genética , Adipócitos/metabolismo , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Neoplasias/genética , Fator 3 Ativador da Transcrição/metabolismo , Adipócitos/patologia , Animais , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
4.
Int J Mol Sci ; 19(11)2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30400212

RESUMO

Traditionally, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a 91 kDa transcription factor, regulates lipid metabolism and long-chain fatty acid oxidation by upregulating the expression of several genes of the tricarboxylic acid cycle and the mitochondrial fatty acid oxidation pathway. In addition, PGC-1α regulates the expression of mitochondrial genes to control mitochondria DNA replication and cellular oxidative metabolism. Recently, new insights showed that several myokines such as irisin and myostatin are epigenetically regulated by PGC-1α in skeletal muscles, thereby modulating systemic energy balance, with marked expansion of mitochondrial volume density and oxidative capacity in healthy or diseased myocardia. In addition, in our studies evaluating whether PGC-1α overexpression in epicardial adipose tissue can act as a paracrine organ to improve or repair cardiac function, we found that overexpression of hepatic PGC-1α increased hepatic fatty acid oxidation and decreased triacylglycerol storage and secretion in vivo and in vitro. In this review, we discuss recent studies showing that PGC-1α may regulate mitochondrial fusion⁻fission homeostasis and affect the renal function in acute or chronic kidney injury. Furthermore, PGC-1α is an emerging protein with a biphasic role in cancer, acting both as a tumor suppressor and a tumor promoter and thus representing a new and unresolved topic for cancer biology studies. In summary, this review paper demonstrates that PGC-1α plays a central role in coordinating the gene expression of key components of mitochondrial biogenesis and as a critical metabolic regulator in many vital organs, including white and brown adipose tissue, skeletal muscle, heart, liver, and kidney.


Assuntos
Metabolismo dos Lipídeos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Metabolismo Energético , Homeostase , Humanos , Neoplasias/metabolismo , Biogênese de Organelas
5.
Gen Comp Endocrinol ; 199: 46-55, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24486085

RESUMO

This study investigated the pathways involved in EGCG modulation of insulin-like growth factor (IGF)-stimulated glucose uptake in 3T3-L1 adipocytes. EGCG inhibited IGF-I and IGF-II stimulation of adipocyte glucose uptake with dose and time dependencies. EGCG at 20µM for 2h decreased IGF-I- and IGF-II-stimulated glucose uptake by 59% and 64%, respectively. Pretreatment of adipocytes with antibody against the EGCG receptor (also known as the 67-kDa laminin receptor; 67LR), prevented the effects of EGCG on IGF-increased glucose uptake, but pretreatment with normal rabbit immunoglobulin did not. This suggests that the 67LR mediates the anti-IGF effect of EGCG on adipocyte glucose uptake. Further analysis indicated EGCG, IGF-I, and IGF-II did not alter total levels of GLUT1 or GLUT4 protein. However, EGCG prevented the IGF-increased GLUT4 levels in the plasma membrane and blocked the IGF-decreased GLUT4 levels in low-density microsomes. Neither EGCG nor its combination with IGF altered GLUT1 protein levels in the plasma membrane and low-density microsomes. EGCG also suppressed the IGF-stimulated phosphorylation of IGF signaling molecules, PKCζ/λ, but not AKT and ERK1/2, proteins. This study suggests that EGCG suppresses IGF stimulation of 3T3-L1 adipocyte glucose uptake through inhibition of the GLUT4 translocation, but not through alterations of the GLUT1 pathway.


Assuntos
Adipócitos/metabolismo , Catequina/análogos & derivados , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Glucose/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Chá/química , Células 3T3-L1 , Acetilcisteína/farmacologia , Adipócitos/efeitos dos fármacos , Animais , Anticorpos/metabolismo , Catequina/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , Transporte Proteico , Receptores de Laminina/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Gen Comp Endocrinol ; 196: 41-51, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24291305

RESUMO

Resistin is known as an adipocyte-specific hormone that can cause insulin resistance and decrease adipocyte differentiation. It can be regulated by transcriptional factors, but the possible role of forkhead transcription factor FOXO1 in regulating resistin gene expression is still unknown. Using 3T3 fibroblast and C3H10T1/2 and 3T3-L1 adipocytes, we found that transient overexpression of a non-phosphorylatable, constitutively active FOXO1, but not the wild type of FOXO1 or a DNA binding-deficient FOXO1, activated resistin promoter-directed luciferase expression. However, transient overexpression of a dominant-negative FOXO1 inactivated resistin promoter activity and reduced resistin mRNA expression. These observations indicate that the action of FOXO1 on resistin gene expression requires the activation of FOXO1 and that the effect of FOXO1 depends on the phosphorylation and dephosphorylation of FOXO1. The FOXO1 protein target sites on the resistin promoter were localized to the proximal -3545 to -787bp of 5'-flanking region of the resistin promoter. A chromatin immunoprecipitation assay also showed that FOXO1 bound the resistin promoter at nucleotide regions of -1539 to -1366bp and -1016 to -835bp, but not at the regions of -795 to -632bp. Results of this study suggest that FOXO1 transcription factor likely activates the expression of adipocyte resistin gene via direct association with the upstream resistin promoter.


Assuntos
Adipócitos/metabolismo , Fatores de Transcrição Forkhead/fisiologia , Regulação da Expressão Gênica/fisiologia , Regiões Promotoras Genéticas/genética , Resistina/genética , Células 3T3-L1 , Animais , Western Blotting , Diferenciação Celular , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Proteína Forkhead Box O1 , Luciferases/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Células NIH 3T3 , Fosforilação , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Resistina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Mol Nutr Food Res ; 56(4): 580-92, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22495985

RESUMO

SCOPE: This study investigated the pathways involved in epigallocatechin gallate (EGCG) modulation of insulin-like growth factor (IGF)-I-stimulated and IGF-II-stimulated mitogenesis in 3T3-L1 preadipocytes. METHODS AND RESULTS: We found that this process was dose and time dependent, and caused by suppression of IGF-I-stimulated and IGF-II-stimulated phosphorylation of p66Shc and mitogen-activated protein kinase (MAPK) pathway proteins, including MEK1 kinase (RAF1), extracellular signal-regulated protein kinase (ERK) kinase (MEK1), and ERK 1 and ERK 2 (ERK1/2), but not phospho-Jun-N-terminal kinase, protein kinase B, p52Shc, or p46Shc. Furthermore, EGCG inhibited the IGF-I-stimulated phosphorylation of the IGF-I receptor-beta (IGF-IR ß), the association of IGF-IR with the p66Shc protein, and the IGF-II-stimulated associations of the IGF-II receptor with G(αi-2) and p66Shc proteins, suggesting that EGCG selectively affects particular types of Shc and MAPK family members. Pretreatment with antiserum against the EGCG receptor (also known as the 67-kDa laminin receptor; 67LR), but not with an adenosine monophosphate (AMP)-activated protein kinase (AMPK) inhibitor, prevented the inhibitory actions of EGCG on IGF-I- and IGF-II-stimulated ERK1/2 phosphorylation and subsequent preadipocyte proliferation. CONCLUSION: The results of this study suggest that EGCG mediates anti-IGF-I and anti-IGF-II signals in preadipocyte mitogenesis via the 67LR but not the AMPK pathway.


Assuntos
Adipócitos/efeitos dos fármacos , Catequina/análogos & derivados , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento Insulin-Like II/antagonistas & inibidores , Fator de Crescimento Insulin-Like I/antagonistas & inibidores , Receptores de Laminina/metabolismo , Células 3T3-L1 , Monofosfato de Adenosina/metabolismo , Animais , Antioxidantes/farmacologia , Catequina/farmacologia , Imunoprecipitação , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Extratos Vegetais/farmacologia , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 2/metabolismo , Chá/química
8.
Planta Med ; 76(15): 1694-8, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20455202

RESUMO

Insulin and (-)-epigallocatechin gallate (EGCG) are reported to regulate obesity and fat accumulation, respectively. This study investigated the pathways involved in EGCG modulation of insulin-stimulated glucose uptake in 3T3-L1 and C3H10T1/2 adipocytes. EGCG inhibited insulin stimulation of adipocyte glucose uptake in a dose- and time-dependent manner. The concentration of EGCG that decreased insulin-stimulated glucose uptake by 50-60% was approximately 5-10 µM for a period of 2 h. At 10 µM, EGCG and gallic acid were more effective than (-)-epicatechin, (-)-epigallocatechin, and (-)-epicatechin 3-gallate. We identified the EGCG receptor [also known as the 67-kDa laminin receptor (67LR)] in fat cells and extended the findings for this study to clarify whether EGCG-induced changes in insulin-stimulated glucose uptake in adipocytes could be mediated through the 67LR. Pretreatment of adipocytes with a 67LR antibody, but not normal rabbit immunoglobulin, prevented the effects of EGCG on insulin-increased glucose uptake. This suggests that the 67LR mediates the effect of EGCG on insulin-stimulated glucose uptake in adipocytes. Moreover, pretreatment with an AMP-activated protein kinase (AMPK) inhibitor, such as compound C, but not with a glutathione (GSH) activator, such as N-acetyl-L-cysteine (NAC), blocked the antiinsulin effect of EGCG on adipocyte glucose uptake. These data suggest that EGCG exerts its anti-insulin action on adipocyte glucose uptake via the AMPK, but not the GSH, pathway. The results of this study possibly support that EGCG mediates fat content.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Catequina/análogos & derivados , Glucose/metabolismo , Insulina/farmacologia , Receptores de Laminina/fisiologia , Chá/química , Animais , Catequina/química , Catequina/isolamento & purificação , Catequina/farmacologia , Camundongos , Camundongos Endogâmicos C3H , Células NIH 3T3
9.
Am J Physiol Cell Physiol ; 297(1): C121-32, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19176763

RESUMO

Insulin and (-)-epigallocatechin gallate (EGCG) have been reported to regulate fat cell mitogenesis and adipogenesis, respectively. This study investigated the pathways involved in EGCG modulation of insulin-stimulated mitogenesis in 3T3-L1 preadipocytes. EGCG inhibited insulin stimulation of preadipocyte proliferation in a dose- and time-dependent manner. EGCG also suppressed insulin-stimulated phosphorylation of the insulin receptor-beta, insulin receptor (IR) substrates 1 and 2 (IRS1 and IRS2), and mitogen-activated protein kinase pathway proteins, RAF1, MEK1/2, and ERK1/2, but not JNK. Furthermore, EGCG inhibited the association of IR with the IRS1 and IRS2 proteins, but not with the IRS4 protein. These data suggest that EGCG selectively affects particular types of IRS and MAPK family members. Generally, EGCG was more effective than epicatechin, epicatechin gallate, and epigallocatechin in modulating insulin-stimulated mitogenic signaling. We identified the EGCG receptor [also known as the 67-kDa laminin receptor (67LR)] in fat cells and found that its expression was sensitive to growth phase, tissue type, and differentiation state. Pretreatment of preadipocytes with 67LR antiserum prevented the effects of EGCG on insulin-stimulated phosphorylation of IRS2, RAF1, and ERK1/2 and insulin-stimulated preadipocyte proliferation (cell number and bromodeoxyuridine incorporation). Moreover, EGCG tended to increase insulin-stimulated associations between the 67LR and IR, IRS1, IRS2, and IRS4 proteins. These data suggest that EGCG mediates anti-insulin signaling in preadipocyte mitogenesis via the 67LR pathway.


Assuntos
Adipócitos/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Camellia sinensis , Catequina/análogos & derivados , Proliferação de Células/efeitos dos fármacos , Insulina/metabolismo , Receptores de Laminina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Fármacos Antiobesidade/isolamento & purificação , Camellia sinensis/química , Catequina/isolamento & purificação , Catequina/farmacologia , Relação Dose-Resposta a Droga , Soros Imunes , Proteínas Substratos do Receptor de Insulina/metabolismo , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-raf/metabolismo , Receptores de Laminina/imunologia , Receptores de Laminina/metabolismo , Fatores de Tempo
10.
Mol Nutr Food Res ; 53(3): 349-60, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19065584

RESUMO

Green tea (-)-epigallocatechin-3-gallate (EGCG) is known as to regulate obesity and fat cell activity. However, little information is known about the effects of EGCG on oxidative reactive oxygen species (ROS) of fat cells. Using 3T3-L1 preadipocytes and adipocytes, we found that EGCG increased ROS production in dose- and time-dependent manners. The concentration of EGCG that increased ROS levels by 180-500% was approximately 50 muM for a range of 8-16 h of treatment. In contrast, EGCG dose- and time-dependently decreased the amount of intracellular glutathione (GSH) levels. EGCG was more effective than (-)-epicatechin, (-)-epicatechin-3-gallate, and (-)-epigallocatechin in changing ROS and GSH levels. This suggests a catechin-specific effect. To further examine the relation of GSH to ROS as altered by EGCG, we observed that exposure of preadipocytes and adipocytes to N-acetyl-L-cysteine (a GSH precursor) blocked the EGCG-induced increases in ROS levels and decreases in GSH levels. These observations suggest a GSH-dependent effect of EGCG on ROS production. While EGCG was demonstrated to alter levels of ROS and GSH, its signaling was altered by an EGCG receptor (the so-called 67 kDa laminin receptor(67LR)) antiserum, but not by normal rabbit serum. These data suggest that EGCG mediates GSH and ROS levels via the 67LR pathway.


Assuntos
Adipócitos/química , Catequina/análogos & derivados , Glutationa/análise , Espécies Reativas de Oxigênio/análise , Receptores de Laminina/fisiologia , Chá/química , Células 3T3-L1 , Acetilcisteína/farmacologia , Adipócitos/efeitos dos fármacos , Animais , Anticorpos/farmacologia , Catequina/farmacologia , Glutationa/antagonistas & inibidores , Camundongos , Receptores de Laminina/imunologia
11.
Am J Physiol Cell Physiol ; 294(6): C1542-51, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18417718

RESUMO

Resistin is known as an adipocyte-specific secretory hormone that can cause insulin resistance and decrease adipocyte differentiation. It can be regulated by sexual hormones. Whether environmental estrogens regulate the production of resistin is still not clear. Using 3T3-L1 adipocytes, we found that octylphenol upregulated resistin mRNA expression in dose- and time-dependent manners. The concentration of octylphenol that increased resistin mRNA levels by 50% was approximately 100 nM within 6 h of treatment. The basal half-life of resistin mRNA induced by actinomycin D was lengthened by octylphenol treatment, suggesting that octylphenol decreases the rate of resistin mRNA degradation. In addition, octylphenol stimulated resistin protein expression and release. The basal half-life of resistin protein induced by cycloheximide was lengthened by octylphenol treatment, suggesting that octylphenol decreases the rate of resistin protein degradation. While octylphenol was shown to increase activities of the estrogen receptor (ER) and MEK1, signaling was demonstrated to be blocked by pretreatment with either ICI-182780 (an ERalpha antagonist) or U-0126 (a MEK1 inhibitor), in which both inhibitors prevented octylphenol-stimulated phosphorylation of ERK. These results imply that ERalpha and ERK are necessary for the octylphenol stimulation of resistin mRNA expression. Moreover, U-0126 antagonized the octylphenol-increased resistin protein expression and release. These data suggest that the way octylphenol signaling increases resistin protein levels is similar to that by which it increases resistin mRNA levels; it is likely mediated through an ERK-dependent pathway. In vivo, octylphenol increased adipose resistin mRNA expression and serum resistin and glucose levels, supporting its in vitro effect.


Assuntos
Adipócitos/efeitos dos fármacos , Disruptores Endócrinos/farmacologia , Receptor alfa de Estrogênio/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fenóis/farmacologia , Resistina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/enzimologia , Adipócitos/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Animais , Compostos Benzidrílicos , Glicemia/efeitos dos fármacos , Butadienos/farmacologia , Cicloeximida/farmacologia , Dactinomicina/farmacologia , Relação Dose-Resposta a Droga , Estradiol/análogos & derivados , Estradiol/farmacologia , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/metabolismo , Fulvestranto , Meia-Vida , Leptina/genética , Leptina/metabolismo , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/metabolismo , Camundongos , Nitrilas/farmacologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Estabilidade de RNA , RNA Mensageiro/metabolismo , Resistina/sangue , Resistina/genética , Fatores de Tempo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA